
Lecture Notes for Abstract Algebra: Lecture 9

1 Symmetric groups

1.1 Permutation groups: symmetric and alternate groups

We write Sn for the for the set of permutations (bijective maps X −→ X, where
X = {1, 2, . . . , n}. This group is called the symmetric group on n letters.

Proposition 1. The symmetric group on n letters, Sn, is a group with n! elements,
where the binary operation is the composition of maps.

Proof. The identity element is the function id : X −→ X sending i 7→ i for all ele-
ments 1 ≤ i ≤ n. The maps f : X −→ X are bijective and therefore admit inverse
f−1 : X −→ X. On the other hand, the image of an element i ∈ X = {1, 2, . . . , n}
must be an element in that set (not assigned as image of any j 6= i, hence the number
of elements).

Definition 2. A cycle of length k is an element of Sn of order k. A cycle of length
k is therefore an element σ ∈ Sn such that, for some a1, a2, . . . , ak ∈ Sn, we have:

σ(a1) = a2, σ(a2) = a3, . . . , σ(ak) = a1.

A cycle of order 2 is called a transposition.

Example 3. In S7, the permutation(
1 2 3 4 5 6 7
6 3 5 1 4 2 7

)
= (1 6 2 3 5 4 1),

is a cycle of length 6. On the other hand, the permutation(
1 2 3 4 5 6
2 4 1 3 6 5

)
= (1 2 4 3)(5 6),

is a product of two disjoint cycles.

Proposition 4. Two disjoint cycles commute in Sn

Proof. Let σ = (a1 a2 . . . ak) and σ′ = (b1 b2 . . . bl). If ai ∈ {a1, a2, . . . , ak}, then
ai /∈ {b1, b2, . . . , bl} and σ ◦ σ′(ai) = σ(ai) = σ′ ◦ σ(ai). We proceed similarly for
bj ∈ {b1, b2, . . . , bl}.

Theorem 5. Every permutation σ ∈ Sn can be written as product of disjoint cycles.
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Proof. Take the set X1 = {1, σ(1), . . . σk(1) . . . }. The set X1 is a finite set and
we can find the first element i such that i /∈ X1. Now, consider the set X2 =
{i, σ(i), σk(i), . . . }, also a finite set. Since the set X is finite, this process will end
with the selection of disjoint sets X1, . . . , Xr and we can build cycles:

σi(x) =

{
σ(x) x ∈ Xi

x x /∈ Xi

,

in such a way that σ = σ1 ◦ σ2 ◦ · · · ◦ σr is the product of r disjoint cycles.

Example 6. Consider the permutation

σ =

(
1 2 3 4 5 6 7 8 9 10 11 12 13
12 13 3 1 11 9 5 10 6 4 7 8 2

)
Then σ = (1 12 8 10 4)(2 13)(3)(5 11 7)(6 9) and we do not include the cycle (3) in the
notation. Hence σ = (1 12 8 10 4)(2 13)(5 11 7)(6 9)

Remark 7. For any σ ∈ Sn, the cycle decomposition of σ−1 can be obtained by
writing the numbers on the cycles in the reverse order. In the previous example, we
will have:

σ = (1 12 8 10 4)(2 13)(5 11 7)(6 9) and σ−1 = (4 10 8 12 1)(13 2)(7 11 5)(9 6).

Remark 8. For a cycle σ = (a1 . . . am) we have σn(ai) = ai+n modm.

Remark 9. Any permutation can be expressed as product of transposition. A cycle
of length k, for example, can be written as product of k − 1 transpositions:

(a1 a2 . . . ak) = (a1 a2)(a2 a3) . . . (ak−1 ak).

This is representations is however not unique for instance, the identity (1) in S4 is
also (1) = (1 3)(3 1)(2 4)(4 2).

Remark 10. The order of a permutation is the lcm of the lengths of the cycles in
the cycle decomposition.

Lemma 11. If the identity is expressed as the product id = τ1 ◦ τ2 ◦ · · · ◦ τr of
transpositions τi, then r is an even number.

Proof. The proof is done by induction on the number r of transpositions. Clearly
r > 1. If r = 2, we are done. Otherwise, we have the following cases for the product
of the last two transpositions τr−1 ◦ τr:

(a b)(a b) = id

(b c)(a b) = (a c)(b c)

(c d)(a b) = (a b)(c d)

(a c)(a b) = (a b)(b c)
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where a, b, c, d are distinct numbers. We are going to pay attention to the movement
of a in this product of transpositions. By doing one of the above transformations,
we can either reduce the length by two and we are done by induction or move a to
the r − 1 transposition, but not in the last one. Continuing in this way, either we
finish by induction or manage to move a to only the first transposition τ1 which will
contradict the fact that the identity fixes a.

Proposition/Definition 12. A permutation σn is even when it can be expressed as
σ = τ1 ◦ τ2 ◦ · · · ◦ τn, for transpositions τi and n is even. Otherwise is said to be odd.
The group An is the subgroup of Sn of even permutations of n elements.

Proof. We need to check the following properties:

1. The product of two even permutations is again an even permutation.

2. The inverse of an even permutation is again even:

σ = σ1 ◦ · · · ◦ σr ⇒ σ−1 = σr ◦ · · · ◦ σ1.

3. The identity id is an even permutation.

1.2 Cycle types and conjugacy classes

Definition 13. The cycle type of a permutation σ ∈ Sn is the unordered sequence
of i1, i2, . . . specifying the number of cycles ij of size j.

Example 14. For σ = (1 12 8 10 4)(2 13)(5 11 7)(6 9), the cycle type will be (1, 2, 1, 0, 1)
or i1 = 1, i2 = 2, i3 = 1, i4 = 0 and i5 = 1. Observe that∑

j

j · ij = 1 + 4 + 3 + 5 = 13.

Proposition 15. Two permutations in Sn are conjugate if and only if they have the
same cycle type.

Proof. The idea here is that if a permutation α sends x to y, then conjugating α by
σ gives a permutation that sends σ(x) to σ(y). The reason for this is because:

(σασ−1)(σ(x)) = σ(α(x)) = σ(y)

Suppose that we have a permutation α and the cycle (a1 a2 . . . an) as part of the cycle
decomposition. Conjugation by σ sends this cycle of the permutation to an equivalent
cycle, where all the elements of the cycle are replaced by their images under σ. In
other words:
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σ(a1 a2 . . . an)σ−1 = (σ(a1)σ(a2) . . . σ(an))

Thus, the lengths of the cycles in the cycle decomposition remain unaffected, so the
number of cycles of each length remains unaffected.

Suppose that the cycle type is the same. Construct a bijection between cycles in the
first permutation and cycles in the second, such that the bijection matches cycles
of the same size. Note that such a bijection is not necessarily unique. For a pair
of cycles (a1 a2 . . . an) and (b1 b2 . . . bn), define σ(ai) = bi. Note that since we can
write a cycle to begin with any element, the choice of σ is not necessarily unique.
In any case, a σ chosen in this way conjugates the first permutation to the second
permutation.

Practice Questions:

1. Find all possible cycle decompositions for elements in S3. Determine the size of
the conjugacy classes.
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