Lecture Notes for Abstract Algebra: Lecture 9

1 Symmetric groups

1.1 Permutation groups: symmetric and alternate groups

We write S_{n} for the for the set of permutations (bijective maps $X \longrightarrow X$, where $X=\{1,2, \ldots, n\}$. This group is called the symmetric group on n letters.

Proposition 1. The symmetric group on n letters, S_{n}, is a group with $n!$ elements, where the binary operation is the composition of maps.

Proof. The identity element is the function id: $X \longrightarrow X$ sending $i \mapsto i$ for all elements $1 \leq i \leq n$. The maps $f: X \longrightarrow X$ are bijective and therefore admit inverse $f^{-1}: X \longrightarrow X$. On the other hand, the image of an element $i \in X=\{1,2, \ldots, n\}$ must be an element in that set (not assigned as image of any $j \neq i$, hence the number of elements).

Definition 2. A cycle of length k is an element of S_{n} of order k. A cycle of length k is therefore an element $\sigma \in S_{n}$ such that, for some $a_{1}, a_{2}, \ldots, a_{k} \in S_{n}$, we have:

$$
\sigma\left(a_{1}\right)=a_{2}, \quad \sigma\left(a_{2}\right)=a_{3}, \quad \ldots, \quad \sigma\left(a_{k}\right)=a_{1} .
$$

A cycle of order 2 is called a transposition.
Example 3. In S_{7}, the permutation

$$
\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
6 & 3 & 5 & 1 & 4 & 2 & 7
\end{array}\right)=(1623541),
$$

is a cycle of length 6 . On the other hand, the permutation

$$
\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 4 & 1 & 3 & 6 & 5
\end{array}\right)=(1243)(56),
$$

is a product of two disjoint cycles.
Proposition 4. Two disjoint cycles commute in S_{n}
Proof. Let $\sigma=\left(a_{1} a_{2} \ldots a_{k}\right)$ and $\sigma^{\prime}=\left(b_{1} b_{2} \ldots b_{l}\right)$. If $a_{i} \in\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$, then $a_{i} \notin\left\{b_{1}, b_{2}, \ldots, b_{l}\right\}$ and $\sigma \circ \sigma^{\prime}\left(a_{i}\right)=\sigma\left(a_{i}\right)=\sigma^{\prime} \circ \sigma\left(a_{i}\right)$. We proceed similarly for $b_{j} \in\left\{b_{1}, b_{2}, \ldots, b_{l}\right\}$.

Theorem 5. Every permutation $\sigma \in S_{n}$ can be written as product of disjoint cycles.

Proof. Take the set $X_{1}=\left\{1, \sigma(1), \ldots \sigma^{k}(1) \ldots\right\}$. The set X_{1} is a finite set and we can find the first element i such that $i \notin X_{1}$. Now, consider the set $X_{2}=$ $\left\{i, \sigma(i), \sigma^{k}(i), \ldots\right\}$, also a finite set. Since the set X is finite, this process will end with the selection of disjoint sets X_{1}, \ldots, X_{r} and we can build cycles:

$$
\sigma_{i}(x)=\left\{\begin{array}{ll}
\sigma(x) & x \in X_{i} \\
x & x \notin X_{i}
\end{array},\right.
$$

in such a way that $\sigma=\sigma_{1} \circ \sigma_{2} \circ \cdots \circ \sigma_{r}$ is the product of r disjoint cycles.
Example 6. Consider the permutation

$$
\sigma=\left(\begin{array}{ccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
12 & 13 & 3 & 1 & 11 & 9 & 5 & 10 & 6 & 4 & 7 & 8 & 2
\end{array}\right)
$$

Then $\sigma=(1128104)(213)(3)(5117)(69)$ and we do not include the cycle (3) in the notation. Hence $\sigma=(1128104)(213)(5117)(69)$

Remark 7. For any $\sigma \in S_{n}$, the cycle decomposition of σ^{-1} can be obtained by writing the numbers on the cycles in the reverse order. In the previous example, we will have:

$$
\sigma=(1128104)(213)(5117)(69) \quad \text { and } \quad \sigma^{-1}=(4108121)(132)(7115)(96)
$$

Remark 8. For a cycle $\sigma=\left(a_{1} \ldots a_{m}\right)$ we have $\sigma^{n}\left(a_{i}\right)=a_{i+n \bmod m}$.
Remark 9. Any permutation can be expressed as product of transposition. A cycle of length k, for example, can be written as product of $k-1$ transpositions:

$$
\left(a_{1} a_{2} \ldots a_{k}\right)=\left(a_{1} a_{2}\right)\left(a_{2} a_{3}\right) \ldots\left(a_{k-1} a_{k}\right)
$$

This is representations is however not unique for instance, the identity (1) in S_{4} is also $(1)=(13)(31)(24)(42)$.

Remark 10. The order of a permutation is the lcm of the lengths of the cycles in the cycle decomposition.

Lemma 11. If the identity is expressed as the product id $=\tau_{1} \circ \tau_{2} \circ \cdots \circ \tau_{r}$ of transpositions τ_{i}, then r is an even number.

Proof. The proof is done by induction on the number r of transpositions. Clearly $r>1$. If $r=2$, we are done. Otherwise, we have the following cases for the product of the last two transpositions $\tau_{r-1} \circ \tau_{r}$:

$$
\begin{aligned}
(a b)(a b) & =\mathrm{id} \\
(b c)(a b) & =(a c)(b c) \\
(c d)(a b) & =(a b)(c d) \\
(a c)(a b) & =(a b)(b c)
\end{aligned}
$$

where a, b, c, d are distinct numbers. We are going to pay attention to the movement of a in this product of transpositions. By doing one of the above transformations, we can either reduce the length by two and we are done by induction or move a to the $r-1$ transposition, but not in the last one. Continuing in this way, either we finish by induction or manage to move a to only the first transposition τ_{1} which will contradict the fact that the identity fixes a.

Proposition/Definition 12. A permutation σ_{n} is even when it can be expressed as $\sigma=\tau_{1} \circ \tau_{2} \circ \cdots \circ \tau_{n}$, for transpositions τ_{i} and n is even. Otherwise is said to be odd. The group A_{n} is the subgroup of S_{n} of even permutations of n elements.

Proof. We need to check the following properties:

1. The product of two even permutations is again an even permutation.
2. The inverse of an even permutation is again even:

$$
\sigma=\sigma_{1} \circ \cdots \circ \sigma_{r} \Rightarrow \sigma^{-1}=\sigma_{r} \circ \cdots \circ \sigma_{1}
$$

3. The identity id is an even permutation.

1.2 Cycle types and conjugacy classes

Definition 13. The cycle type of a permutation $\sigma \in S_{n}$ is the unordered sequence of i_{1}, i_{2}, \ldots specifying the number of cycles i_{j} of size j.

Example 14. For $\sigma=(1128104)(213)(5117)(69)$, the cycle type will be $(1,2,1,0,1)$ or $i_{1}=1, i_{2}=2, i_{3}=1, i_{4}=0$ and $i_{5}=1$. Observe that

$$
\sum_{j} j \cdot i_{j}=1+4+3+5=13 .
$$

Proposition 15. Two permutations in S_{n} are conjugate if and only if they have the same cycle type.

Proof. The idea here is that if a permutation α sends x to y, then conjugating α by σ gives a permutation that sends $\sigma(x)$ to $\sigma(y)$. The reason for this is because:

$$
\left(\sigma \alpha \sigma^{-1}\right)(\sigma(x))=\sigma(\alpha(x))=\sigma(y)
$$

Suppose that we have a permutation α and the cycle $\left(a_{1} a_{2} \ldots a_{n}\right)$ as part of the cycle decomposition. Conjugation by σ sends this cycle of the permutation to an equivalent cycle, where all the elements of the cycle are replaced by their images under σ. In other words:

$$
\sigma\left(a_{1} a_{2} \ldots a_{n}\right) \sigma^{-1}=\left(\sigma\left(a_{1}\right) \sigma\left(a_{2}\right) \ldots \sigma\left(a_{n}\right)\right)
$$

Thus, the lengths of the cycles in the cycle decomposition remain unaffected, so the number of cycles of each length remains unaffected.

Suppose that the cycle type is the same. Construct a bijection between cycles in the first permutation and cycles in the second, such that the bijection matches cycles of the same size. Note that such a bijection is not necessarily unique. For a pair of cycles $\left(a_{1} a_{2} \ldots a_{n}\right)$ and $\left(b_{1} b_{2} \ldots b_{n}\right)$, define $\sigma\left(a_{i}\right)=b_{i}$. Note that since we can write a cycle to begin with any element, the choice of σ is not necessarily unique. In any case, a σ chosen in this way conjugates the first permutation to the second permutation.

Practice Questions:

1. Find all possible cycle decompositions for elements in S_{3}. Determine the size of the conjugacy classes.
